Skip to main content

 

- Data Insight Driven Culture -

Data Strategy & Data Governance ist der Schlüssel zu einer nachhaltig datenerkenntnisgesteuerten Organisation

Eine Data Strategy als integraler Baustein einer Unternehmensstrategie unterstützt maßgeblich das Erreichen von Prozess- und Produktzielen, sichert die Compliance-Konformität, steigert den Durchsatz und unterstützt Organisationen in der Transformation zu einer datenerkenntnisorientierten Kultur (Data Insight Driven Culture).

Organisationen sichern somit ihre Wettbewerbsfähigkeit und können diese durch eine gesteigerte Datenintelligenz und Datenkompetenz (Data Literacy) weiter ausbauen.

 

Data- und Information Governance - Worum geht es?

So regeln Sie die gesamte Daten- und Informationslogistik

Eine Data- und Information Governance (DIG) ist das unternehmensweite Rahmenwerk für ein Compliance-konformes Daten- und Informationsmanagement. Solch ein Rahmenwerk regelt den Umgang und die Steuerung der gesamten Daten- und Informationslogistik, bildet die Qualität-Standards ab und definiert das Informationsdesign.

Datenqualität und Automatisierungs-Prozesse

Integration des Data-Quality-Managements in eine ganzheitliche Qualitätsmanagement-Strategie schafft erst erfolgreiche Automatisierungsprozesse.

Wenn ich als Kunde für ein Produkt einen hohen Preis bezahle, habe ich auch hohe Erwartungen an  die Qualität. Ein einfacher Sachverhalt – für mich als Käufer. Wie erfülle ich diesen Anspruch als herstellendes Unternehmen? Welche Rolle spielen hier der Faktor Mensch und die sogenannte Industrie 4.0?

Der Datenqualitätsdurchsatz bestimmt die Effizienz digitalisierter Prozesse

Digitales Formularmanagement steigert die Effizienz - Voraussetzung für die Verbesserung ist einwandfreie Datenqualität

Ein Großteil von Formularen wird noch immer auf Papier ausgedruckt und per Hand ausgefüllt, anschließend wieder eingescannt und bestenfalls in einem Dokumentenmanagementsystem abgelegt und verschlagwortet. Digitales Formularmanagement bietet die Möglichkeit, diesen Prozess erheblich effizienter und damit wirtschaftlicher zu gestalten.

Ein Qualitätsmanagementsystem (QMS) ohne ein integriertes Datenqualitätsmanagement (DQM) hat in einer digitalisierten Welt keine Zukunft

Durch die stark wachsende Anzahl datengetriebener Geschäftsmodelle gibt es keinen Ausweg für das Qualitätsmanagement, sich verstärkt mit dem Thema Datenqualität zu beschäftigen. Datenqualität als Risikofaktor ist schon etwas länger bekannt. Negative Auswirkungen schlechter Datenqualität auf das gesamte System einer Organisation werden zukünftig durchschlagender sein.

Nachschau einiger Vorträge als Sprecher auf Konferenzen

Impuls-Vortrag Data Strategy

Vortrags-Slides zum Video-Cast BI or DIE Level Up 2022 - Data Strategy & Governance

 

Data Governance

Vortragstitel:
"Data Governance Upgrade zur Data Driven Culture (von Unitymedia zu Vodafone)"

Konferenzen:


Vortragstitel:
"Datenqualitätsmanagement meistern in einer Welt der verschiedenen Geschwindigkeiten und sich stetig ändernden Herausforderungen."

Konferenz:
Data Quality Praxistage, Gut Heckenhof, Eitorf, 21.11.2019 (Weitere Infos...)


Datenqualitätsmanagement im Bereich Business Intelligence

Vortragstitel:

"Beurteilung der Leistungsfähigkeit von Daten im Rapid-Prototyping-Verfahren in agilen Umgebungen"

Vorgetragen auf folgenden Konferenzen:

EUROFORUM - Stammdaten Management 2018, 5. bis 7. November, Düsseldorf

InfoZoom Best Practice Day 2018, 29. November, Schloss Birlinghoven,  Sankt-Augustin

Anmerkung:

Die Vortragsfolien können nicht der Allgemeinheit zur Verfügung gestellt werden. Wollen Sie mehr über das Verfahren ansich erfahren, dann folgen Sie einfach dem nachfolgenden Link.

Data Governance: Vom Data Profiling zur ganzheitlichen Leistungsbewertung von Daten 


Datenqualitätsmanagement

Datenqualität - Voraussetzung für ein funktionierendes Qualitäts-Management-System
(Control 2016, DGQ-Kundenforen, Stuttgart, 27.04.2016 sowie QM-Kreis Darmstadt)

Diesen Vortrag können Sie sich auch als Video-Vortrag ansehen! >>>


Daten- und Informationsqualitätsmanagement als integraler Baustein von Management Systemen (z.B. DIN EN ISO 9001)
(DGQ Regionalkreis Köln/Bonn, 16.07.2015 und 22.10.2015; Aufgrund der hohen Nachfrage wurde der Vortrag zwei mal gehalten)


Datenqualität und Normen

Orientierungshilfe ISO8000, ISO9000ff und Best Practice zur Einführung eines nachhaltigen Datenqualitätsmanagements.
(InfoZoom Partnertag, Schloss Birlinghoven, St. Augustin, 08.11.2013 + GIQMC, Bad Soden, 15.11.2013)


Datenqualitätsmanagement (DQM) in der Versicherung

Methodik zur Identifizierung der Auswirkungen schlechter Datenqualität auf Geschäftsprozesse!
(InfoZoom Best Practice Day, Schloss Birlinghoven, St. Augustin, 2010)

 


SEPA - Kunden im Blick?

Leitfaden zur Umsetzung des SEPA-Verfahrens in Unternehmen unter Berücksichtigung des Kunden.
(vdb Infoforum: Düsseldorf, 28.02.2012 + Frankfurt, 13.03.2012; HannoverIT: Hannover, 27.11.2013)

 


HiSpeed Data Analytics

Ad-hoc Analyse großer Datenmengen für Jedermann und -frau - Mehrwert in TOC-Projekten
(TOC Netzwerktagung, Darmstadt, 24.03.2012)


Durchsatzrechnung versus Kostenrechnung

Vom kostenorientierten zum gewinnorientierten Unternehmen mit der Methodik des Durchsatzmanagements nach TOC!
(DGQ Kreis Bonn-Rhein-Sieg, Niederkassel, Febr. 2012 und IHK Aachen, März 2012)

 

Prozessorientierter Data Quality Index erfolgreich einführen

Wer Datenqualität und Prozessqualität als eine Einheit betrachtet, hat gute Zukunftsaussichten

Das Forschungsprojekt  „World Management Survey“ beschäftigt sich mit der Einführung und Anwendung von Managementpraktiken in über 12.000 Unternehmen aus 34 Ländern. Es wurde gemessen, wie gut eine Organisation die wesentlichen Führungsmethoden in vier Bereichen beherrscht: Produktionsmanagement, Performance-Monitoring, Zielvorgaben und Talentmanagement.

Die Auswertung der Daten zeigt zwei wesentliche Erkenntnisse.

Prozessorientiertes Datenqualitätsmanagement

Prozessgedanke entscheidend für Erfolg

Je mehr Daten ein Unternehmen erzeugt, desto wichtiger ist es, dass es sich auf diese auch verlassen kann. Eine Entscheidung, die auf fehlerhaften Daten basiert, kann fatale Folgen haben. Verhindern lassen sich diese Probleme, wenn die Datenqualität direkt an die Geschäftsprozesse gekoppelt wird.

Copyright © 2014 - 2023 by Marco Geuer
The Data Economist | Advisory, Impulse Talks, Training
Establishing sustainable data insight driven cultures
the-data-economist.com | business-information-excellence.de

Wir nutzen Cookies auf unserer Website. Einige von ihnen sind essenziell für den Betrieb der Seite, während andere uns helfen, diese Website und die Nutzererfahrung zu verbessern (Tracking Cookies). Sie können selbst entscheiden, ob Sie die Cookies zulassen möchten. Bitte beachten Sie, dass bei einer Ablehnung womöglich nicht mehr alle Funktionalitäten der Seite zur Verfügung stehen.