Surfen durch den Datendschungel, Daten verstehen und Daten shoppen (Shopping for Data)
Haben Sie schon den Begriff „Shopping for Data“ gehört? Dieser wird gerne im Zusammenhang mit den Begriffen Data Catalogue und Data Democratization in einen Topf geworfen. Mit Data Democratization ist gemeint, dass Menschen einfach und pragmatisch auf jegliche Art von Daten, die sie für ihre Zwecke benötigen zugreifen und diese verwenden können, bzw. jederzeit bereit sind Daten mit anderen zu teilen. Das natürlich jederzeit compliancekonform. In Organisationen wird dies durch einen Data Catalogue ermöglicht oder auch immer häufiger gerne Data Marketplace genannt, auf dem Sie wie in einem Onlineshop auf Einkaufstour nach Daten und Datenprodukten gehen (Shopping for Data).
Wie Organisationen ihre Daten in Geld bewerten können und warum Data Governance sich selbst finanziert.
Viele Unternehmen hadern noch mit dem Gedanken eine Data Governance einzuführen und fragen sich, welchen Mehrwert hat eigentlich Data Governance? Natürlich kann man jetzt sagen, was gibt es da noch zu überlegen. Wer im Zuge der Digitalisierung wettbewerbsfähig bleiben möchte, kommt an einer Data Strategy und der Einführung einer Data Governance nicht vorbei. Zumindest liest man das permanent in der Fachpresse und hört es ständig von vielen Beratern. Andererseits ist es absolut berechtigt in diesem Zusammenhang die ökonomische Frage zu stellen, welchen Mehrwert in Geld bringt eine Data Governance der Organisation und wieviel bin ich bereit zu investieren bzw. wie wird mein ROI (Return On Invest) aussehen.
Erfolgreich bleiben im digitalen Zeitalter
Warum bringt ein Wechsel der strategischen Ausrichtung auf ein prozessorientiertes Datenqualitätsmanagement einen größeren Nutzen für die gesamte Organisation? Er schafft die überlebenswichtige Verknüpfung unterschiedlicher Management-Systeme in Organisationen.
Prozessgedanke entscheidend für Erfolg
Je mehr Daten ein Unternehmen erzeugt, desto wichtiger ist es, dass es sich auf diese auch verlassen kann. Eine Entscheidung, die auf fehlerhaften Daten basiert, kann fatale Folgen haben. Verhindern lassen sich diese Probleme, wenn die Datenqualität direkt an die Geschäftsprozesse gekoppelt wird.
Ein eigener Erfahrungsbericht mit einem Datenprovider
Vor einigen Wochen meldete sich telefonisch die Vertrieblerin eines Datenproviders bei mir mit der Frage, ob es für die ACT Gruppe interessant wäre für die Kundenakquise detaillierte Kontaktdaten von Unternehmen zu bekommen, die unsere Webseite besucht haben.
Grundsätzlich war ich interessiert und wollte wissen,
a) wie dies im Zusammenhang mit der ACT Webseite technisch gelöst wird und
b) welche Daten mit welcher Qualität angeboten werden.
Zusätzlich zu den qualifizierten Adressen könne man uns auch entsprechende Ansprechpartner zur Verfügung stellen.
Datenqualitätsmanagement nach der "Friday Afternoon Measurement" Methode
Entscheidungsträger, Führungskräfte, Datenwissenschaftler und Manager müssen oft schnell beurteilen, ob sie einem Datensatz vertrauen können, ob sie ihn in eine Analyse einbeziehen oder ob eine neue Richtung einschlagen werden muss. Es gibt viele Möglichkeiten, aber die grundlegende Frage ist, "habe ich ein Problem mit der Datenqualität?"
Mit der Methode "Friday Afternoon Measurement (FAM)" von Thomas C. Redman, kann diese Frage schnell beantwortet werden. Die Methode richtet sich an Manager auf jeder Ebene, deren Entscheidungsfähigkeit stark von Daten abhängig ist. Mit der fortschreitenden Digitalisierung von Geschäftsprozessen steigt zunehmend das Risiko fehlerhafter Entscheidungen sowie einer verzögerten Erfüllung von Prozesszielen aufgrund schlechter Datenqualität. Die FAM-Methode hilft, das aktuelle Niveau der Datenqualität zu messen, die möglichen Auswirkungen gut einzuschätzen und entsprechende Handlungsoptionen abzuleiten. Die Methode ist unabhängig von Branche, Unternehmen, Prozesse und Daten einsetzbar.